Orthogonal and unitary tensor decomposition from an algebraic perspective

Ada Boralevi, Jan Draisma, Emil Horobeţ, Elina Robeva

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

14 Citaten (Scopus)

Samenvatting

While every matrix admits a singular value decomposition, in which the terms are pairwise orthogonal in a strong sense, higher-order tensors typically do not admit such an orthogonal decomposition. Those that do have attracted attention from theoretical computer science and scientific computing. We complement this existing body of literature with an algebro-geometric analysis of the set of orthogonally decomposable tensors. More specifically, we prove that they form a real-algebraic variety defined by polynomials of degree at most four. The exact degrees, and the corresponding polynomials, are different in each of three times two scenarios: ordinary, symmetric, or alternating tensors; and real-orthogonal versus complex-unitary. A key feature of our approach is a surprising connection between orthogonally decomposable tensors and semisimple algebras—associative in the ordinary and symmetric settings and of compact Lie type in the alternating setting.

Originele taal-2Engels
Pagina's (van-tot)223-260
Aantal pagina's38
TijdschriftIsrael Journal of Mathematics
Volume222
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 1 okt 2017

Vingerafdruk

Duik in de onderzoeksthema's van 'Orthogonal and unitary tensor decomposition from an algebraic perspective'. Samen vormen ze een unieke vingerafdruk.

Citeer dit