Optimizing Resource Allocation Policies in Real-World Business Processes Using Hybrid Process Simulation and Deep Reinforcement Learning

Francesca Meneghello (Corresponderende auteur), Jeroen Middelhuis (Corresponderende auteur), Laura Genga, Zaharah Bukhsh, Massimiliano Ronzani, Chiara Di Francescomarino, Chiara Ghidini, Remco Dijkman

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Resource allocation refers to the assignment of resources to activities for their execution within a business process at runtime. While resource allocation approaches are common in industries such as manufacturing, directly applying them to business processes remains a challenge. Recently, techniques like Deep Reinforcement Learning (DRL) have been used to learn efficient resource allocation strategies to minimize the cycle time. While DRL has been proven to work well for simplified synthetic processes, its usefulness in real-world business processes remains untested, partly due to the challenging nature of realizing accurate simulation environments. To overcome this limitation, we propose DRLHSM that combines DRL with Hybrid simulation models (HSM). The HSM can accurately replicate the business process behavior so that we can assess the effectiveness of DRL in optimizing real-world business processes. We evaluate our method on four real-world and two elaborate synthetic business processes, constrained by temporal resource availability and a restricted number of resources. An empirical evaluation shows that DRLHSM outperforms the benchmarks by, on average, 45%, up to 307%, in 14 out of 24 considered evaluation scenarios and is competitive with the best-performing benchmark in 8 scenarios.

Originele taal-2Engels
TitelBusiness Process Management
Subtitel22nd International Conference, BPM 2024, Krakow, Poland, September 1–6, 2024, Proceedings
RedacteurenAndrea Marrella, Manuel Resinas, Mieke Jans, Michael Rosemann
Plaats van productieCham
UitgeverijSpringer
Pagina's167-184
Aantal pagina's18
ISBN van elektronische versie978-3-031-70396-6
ISBN van geprinte versie978-3-031-70395-9
DOI's
StatusGepubliceerd - 2 sep. 2024
Evenement22nd International Conference on Business Process Management, BPM 2024 - Krakow, Polen
Duur: 1 sep. 20246 sep. 2024

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14940 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres22nd International Conference on Business Process Management, BPM 2024
Land/RegioPolen
StadKrakow
Periode1/09/246/09/24

Vingerafdruk

Duik in de onderzoeksthema's van 'Optimizing Resource Allocation Policies in Real-World Business Processes Using Hybrid Process Simulation and Deep Reinforcement Learning'. Samen vormen ze een unieke vingerafdruk.

Citeer dit