Optimization through recomputation in the polyhedral model

M.H. Jongen, L.J.W. Waeijen, R. Jordans, L. Jozwiak, H. Corporaal

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

233 Downloads (Pure)

Samenvatting

Many modern (mobile) systems involve memory intensive computations. External memory accesses are costly when it comes to the execution time and energy consumption of a program. To overcome this, we usually apply tiling to improve data locality and data reuse in internal memories. In the research reported in this paper we add the possibility to recompute data rather than storing temporary results, and demonstrate that this can have a positive e ect on the overall application performance.
To achieve this we represented recomputation in the Polyhedral model by extending Polly. We experimentally veri ed the e ectiveness of recomputation on a pair of Convolutional Neural Network layers, when applying loop tiling, loop fusion, and recompute.
Originele taal-2Engels
TitelEighth International Workshop on Polyhedral Compilation Techniques
SubtitelIn conjunction with HiPEAC 2018
Aantal pagina's9
StatusGepubliceerd - 22 jan. 2018
Evenement8th International Workshop on Polyhedral Compilation Techniques - Manchester, Verenigd Koninkrijk
Duur: 23 jan. 201823 jan. 2018
Congresnummer: 2018
http://impact.gforge.inria.fr/impact2018

Workshop

Workshop8th International Workshop on Polyhedral Compilation Techniques
Verkorte titelIMPACT
Land/RegioVerenigd Koninkrijk
StadManchester
Periode23/01/1823/01/18
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Optimization through recomputation in the polyhedral model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit