Optimization of eigenvalue bounds for the independence and chromatic number of graph powers

A. Abiad, G. Coutinho, M. A. Fiol, B. D. Nogueira, S. Zeijlemaker

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Citaten (Scopus)
141 Downloads (Pure)

Samenvatting

The kth power of a graph G=(V,E), Gk, is the graph whose vertex set is V and in which two distinct vertices are adjacent if and only if their distance in G is at most k. This article proves various eigenvalue bounds for the independence number and chromatic number of Gk which purely depend on the spectrum of G, together with a method to optimize them. Our bounds for the k-independence number also work for its quantum counterpart, which is not known to be a computable parameter in general, thus justifying the use of integer programming to optimize them. Some of the bounds previously known in the literature follow as a corollary of our main results. Infinite families of graphs where the bounds are sharp are presented as well.

Originele taal-2Engels
Artikelnummer112706
Aantal pagina's15
TijdschriftDiscrete Mathematics
Volume345
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - mrt. 2022

Bibliografische nota

Publisher Copyright:
© 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'Optimization of eigenvalue bounds for the independence and chromatic number of graph powers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit