TY - GEN
T1 - Optimality of Treating Inter-Cell Interference as Noise under Finite Precision CSIT
AU - Joudeh, Hamdi
AU - Caire, Giuseppe
PY - 2020/6
Y1 - 2020/6
N2 - In this work, we study the generalized degrees- of-freedom (GDoF) of downlink and uplink cellular networks, modeled as Gaussian interfering broadcast channels (IBC) and Gaussian interfering multiple access channels (IMAC), respectively. We focus on regimes of low inter-cell interference, where single-cell transmission with power control and treating inter-cell interference as noise (mc-TIN) is GDoF optimal. Recent works have identified two relevant regimes in this context: one in which the GDoF region achieved through mc-TIN for both the IBC and IMAC is a convex polyhedron without the need for time-sharing (mc-CTIN regime), and a smaller (sub)regime where mc-TIN is GDoF optimal for both the IBC and IMAC (mc-TIN regime). In this work, we extend the mc-TIN framework to cellular scenarios where channel state information at the transmitters (CSIT) is limited to finite precision. We show that in this case, the GDoF optimality of mc-TIN extends to the entire mc-CTIN regime, where GDoF benefits due to interference alignment (IA) are lost. Our result constitutes yet another successful application of robust outer bounds based on the aligned images (AI) approach.
AB - In this work, we study the generalized degrees- of-freedom (GDoF) of downlink and uplink cellular networks, modeled as Gaussian interfering broadcast channels (IBC) and Gaussian interfering multiple access channels (IMAC), respectively. We focus on regimes of low inter-cell interference, where single-cell transmission with power control and treating inter-cell interference as noise (mc-TIN) is GDoF optimal. Recent works have identified two relevant regimes in this context: one in which the GDoF region achieved through mc-TIN for both the IBC and IMAC is a convex polyhedron without the need for time-sharing (mc-CTIN regime), and a smaller (sub)regime where mc-TIN is GDoF optimal for both the IBC and IMAC (mc-TIN regime). In this work, we extend the mc-TIN framework to cellular scenarios where channel state information at the transmitters (CSIT) is limited to finite precision. We show that in this case, the GDoF optimality of mc-TIN extends to the entire mc-CTIN regime, where GDoF benefits due to interference alignment (IA) are lost. Our result constitutes yet another successful application of robust outer bounds based on the aligned images (AI) approach.
UR - http://www.scopus.com/inward/record.url?scp=85090408549&partnerID=8YFLogxK
U2 - 10.1109/ISIT44484.2020.9174526
DO - 10.1109/ISIT44484.2020.9174526
M3 - Conference contribution
AN - SCOPUS:85090408549
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2936
EP - 2941
BT - 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers
T2 - 2020 IEEE International Symposium on Information Theory, ISIT 2020
Y2 - 21 June 2020 through 26 June 2020
ER -