Optimal Hankel norm model reduction for discrete-time descriptor systems

X. Cao (Corresponding author), M.B. Saltik (Corresponding author), S. Weiland (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
1 Downloads (Pure)


Optimal Hankel norm model reduction for dynamical systems is of great significance in model-based simulation and design. For the class of linear time-invariant systems, it is among the few optimal reduction methods for which a prior error bound between the original system and its approximation is known. However, for descriptor systems, this optimal approximation technique no longer applies. In this paper, we propose several definitions of the Hankel operator for dynamical discrete-time descriptor systems. We investigate the implications of these definitions for the problem of optimal model approximation of descriptor systems in the sense of the Hankel norm. Novel reduction algorithms are derived for this class of systems with and without preservation of the DAE-index. The performance of the proposed methods is illustrated by numerical examples.
Originele taal-2Engels
Pagina's (van-tot)4124-4143
Aantal pagina's20
TijdschriftJournal of the Franklin Institute
Nummer van het tijdschrift7
Vroegere onlinedatummrt 2019
StatusGepubliceerd - mei 2019

Vingerafdruk Duik in de onderzoeksthema's van 'Optimal Hankel norm model reduction for discrete-time descriptor systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit