Optimal H∞ LMI-Based Model Reduction by Moment Matching for Linear Time-Invariant Models

M.F. (Fahim) Shakib, Giordano Scarciotti, M. Jungers, A.Y. Pogromskiy, Alexei Pavlov, N. van de Wouw

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
2 Downloads (Pure)

Samenvatting

This paper proposes an approach to model order reduction of stable linear time-invariant (LTI) models. The proposed approach extends time-domain moment matching by the minimization of the H_infty norm of the error dynamics characterizing the difference between the full-order and reduced-order models given fixed interpolation points. The optimal H_infty moment matching problem is a constrained optimization problem with bilinear constraints. Introducing a novel numerical procedure, we minimize the approximation error, while respecting the constraints and, thereby, find a suboptimal H_infty reduced-order model. The effectiveness of the approach is
illustrated in a numerical example.
Originele taal-2Engels
Titel60th IEEE Conference on Decision and Control (CDC 2021)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's6914-6919
Aantal pagina's6
ISBN van elektronische versie978-1-6654-3659-5
DOI's
StatusGepubliceerd - 1 feb. 2022
Evenement2021 60th IEEE Conference on Decision and Control (CDC) - Austin, TX, USA, Austin, Verenigde Staten van Amerika
Duur: 13 dec. 202117 dec. 2021
Congresnummer: 60
https://2021.ieeecdc.org/

Congres

Congres2021 60th IEEE Conference on Decision and Control (CDC)
Verkorte titelCDC 2021
Land/RegioVerenigde Staten van Amerika
StadAustin
Periode13/12/2117/12/21
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Optimal H∞ LMI-Based Model Reduction by Moment Matching for Linear Time-Invariant Models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit