Optimal data reduction for graph coloring using low-degree polynomials

Bart M.P. Jansen, Astrid Pieterse

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

6 Citaten (Scopus)
114 Downloads (Pure)

Samenvatting

The theory of kernelization can be used to rigorously analyze data reduction for graph coloring problems. Here, the aim is to reduce a q-Coloring input to an equivalent but smaller input whose size is provably bounded in terms of structural properties, such as the size of a minimum vertex cover. In this paper we settle two open problems about data reduction for q-Coloring. First, we use a recent technique of finding redundant constraints by representing them as lowdegree polynomials, to obtain a kernel of bitsize O(kq-1 log k) for q-Coloring parameterized by Vertex Cover for any q ≥ 3. This size bound is optimal up to ko(1) factors assuming NP ⊈ coNP/poly, and improves on the previous-best kernel of size O(kq). Our second result shows that 3-Coloring does not admit non-trivial sparsification: assuming NP ⊈ coNP/poly, the parameterization by the number of vertices n admits no (generalized) kernel of size O(n2-ϵ) for any ϵ > 0. Previously, such a lower bound was only known for coloring with q ≥ 4 colors.

Originele taal-2Engels
Titel12th International Symposium on Parameterized and Exact Computation, IPEC 2017
Plaats van productieDagstuhl
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Aantal pagina's12
ISBN van elektronische versie978-3-95977-051-4
DOI's
StatusGepubliceerd - 1 feb. 2018
Evenement12th International Symposium on Parameterized and Exact Computation, IPEC 2017 - Vienna, Oostenrijk
Duur: 6 sep. 20178 sep. 2017
Congresnummer: 12
https://algo2017.ac.tuwien.ac.at/ipec

Publicatie series

NaamLeibniz International Proceedings in Informatics (LIPIcs)
Volume89

Congres

Congres12th International Symposium on Parameterized and Exact Computation, IPEC 2017
Verkorte titelIPEC 2017
Land/RegioOostenrijk
StadVienna
Periode6/09/178/09/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Optimal data reduction for graph coloring using low-degree polynomials'. Samen vormen ze een unieke vingerafdruk.

Citeer dit