Samenvatting
The theory of kernelization can be used to rigorously analyze data reduction for graph coloring problems. Here, the aim is to reduce a q-Coloring input to an equivalent but smaller input whose size is provably bounded in terms of structural properties, such as the size of a minimum vertex cover. In this paper we settle two open problems about data reduction for q-Coloring. First, we use a recent technique of finding redundant constraints by representing them as lowdegree polynomials, to obtain a kernel of bitsize O(kq-1 log k) for q-Coloring parameterized by Vertex Cover for any q ≥ 3. This size bound is optimal up to ko(1) factors assuming NP ⊈ coNP/poly, and improves on the previous-best kernel of size O(kq). Our second result shows that 3-Coloring does not admit non-trivial sparsification: assuming NP ⊈ coNP/poly, the parameterization by the number of vertices n admits no (generalized) kernel of size O(n2-ϵ) for any ϵ > 0. Previously, such a lower bound was only known for coloring with q ≥ 4 colors.
Originele taal-2 | Engels |
---|---|
Titel | 12th International Symposium on Parameterized and Exact Computation, IPEC 2017 |
Plaats van productie | Dagstuhl |
Uitgeverij | Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
Aantal pagina's | 12 |
ISBN van elektronische versie | 978-3-95977-051-4 |
DOI's | |
Status | Gepubliceerd - 1 feb. 2018 |
Evenement | 12th International Symposium on Parameterized and Exact Computation, IPEC 2017 - Vienna, Oostenrijk Duur: 6 sep. 2017 → 8 sep. 2017 Congresnummer: 12 https://algo2017.ac.tuwien.ac.at/ipec |
Publicatie series
Naam | Leibniz International Proceedings in Informatics (LIPIcs) |
---|---|
Volume | 89 |
Congres
Congres | 12th International Symposium on Parameterized and Exact Computation, IPEC 2017 |
---|---|
Verkorte titel | IPEC 2017 |
Land/Regio | Oostenrijk |
Stad | Vienna |
Periode | 6/09/17 → 8/09/17 |
Internet adres |