Optimal approximation of linear operators: a singular value decomposition approach

H.B. Siahaan, S. Weiland, A.A. Stoorvogel

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review


The purpose of this paper is to propose a definition of a set of singular values and a singular value decomposition associated with a linear operator defined on arbitrary normed linear spaces. This generalizes the usual notion of singular values and singular value decompositions to operators defined on spaces equipped with the p-norm, where p is arbitrary. Basic properties of these generalized singular values are derived and the problem of optimal rank approximation of linear operators is investigated in this context. We give sufficient conditions for the existence of optimal rank approximants in the p-induced norm and discuss an application of generalized singular values for the identification of dynamical systems from data.
Originele taal-2Engels
TitelProceedings 15th International Symposium on Mathematical Theory of Networks and Systems (MNTS'02, Notre Dame IN, USA, August 12-16, 2002), Session FM3
RedacteurenD.S. Gilliam, J. Rosenthal
Plaats van productieNotre Dame IN, USA
UitgeverijUniv. Notre Dame
StatusGepubliceerd - 2002


Duik in de onderzoeksthema's van 'Optimal approximation of linear operators: a singular value decomposition approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit