Samenvatting
Hierarchical autoregressive (AR) models can describe many complex physical processes. Unfortunately, online adaptation in these models under non-stationary conditions remains a challenge. In this paper, we track states and parameters in a hierarchical AR filter by means of variational message passing (VMP) in a factor graph. We derive VMP update rules for an "AR node" that can be re-used at various hierarchical levels and supports automated message passing-based inference for states and parameters. The proposed method is experimentally validated for a 2-level hierarchical AR model.
Originele taal-2 | Engels |
---|---|
Titel | 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 1337-1342 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-7281-6432-8 |
DOI's | |
Status | Gepubliceerd - 24 aug. 2020 |
Evenement | 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, Verenigde Staten van Amerika Duur: 21 jun. 2020 → 26 jun. 2020 |
Congres
Congres | 2020 IEEE International Symposium on Information Theory, ISIT 2020 |
---|---|
Land/Regio | Verenigde Staten van Amerika |
Stad | Los Angeles |
Periode | 21/06/20 → 26/06/20 |