Online variational message passing in hierarchical autoregressive models

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Hierarchical autoregressive (AR) models can describe many complex physical processes. Unfortunately, online adaptation in these models under non-stationary conditions remains a challenge. In this paper, we track states and parameters in a hierarchical AR filter by means of variational message passing (VMP) in a factor graph. We derive VMP update rules for an "AR node" that can be re-used at various hierarchical levels and supports automated message passing-based inference for states and parameters. The proposed method is experimentally validated for a 2-level hierarchical AR model.
Originele taal-2Engels
Titel2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1337-1342
Aantal pagina's6
ISBN van elektronische versie978-1-7281-6432-8
DOI's
StatusGepubliceerd - 24 aug. 2020
Evenement2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, Verenigde Staten van Amerika
Duur: 21 jun. 202026 jun. 2020

Congres

Congres2020 IEEE International Symposium on Information Theory, ISIT 2020
Land/RegioVerenigde Staten van Amerika
StadLos Angeles
Periode21/06/2026/06/20

Vingerafdruk

Duik in de onderzoeksthema's van 'Online variational message passing in hierarchical autoregressive models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit