Online system identification in a Duffing oscillator by free energy minimisation

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

Online system identification is the estimation of parameters of a dynamical system, such as mass or friction coefficients, for each measurement of the input and output signals. Here, the nonlinear stochastic differential equation of a Duffing oscillator is cast to a generative model and dynamical parameters are inferred using variational message passing on a factor graph of the model. The approach is validated with an experiment on data from an electronic implementation of a Duffing oscillator.The proposed inference procedure performs as well as offline prediction error minimisation in a state-of-the-art nonlinear model.
Originele taal-2Engels
TitelActive Inference
SubtitelFirst International Workshop, IWAI 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14, 2020, Proceedings
RedacteurenTim Verbelen, Pablo Lanillos, Christopher L. Buckley, Cedric De Boom
Plaats van productieCham
UitgeverijSpringer
Hoofdstuk6
Pagina's42-51
Aantal pagina's10
ISBN van elektronische versie978-3-030-64919-7
ISBN van geprinte versie978-3-030-64918-0
DOI's
StatusGepubliceerd - 18 dec. 2020
Evenement1st International Workshop on Active Inference (IWAI 2020) - Virtual, Ghent, België
Duur: 14 sep. 202014 sep. 2020
Congresnummer: 1
https://iwaiworkshop.github.io/

Publicatie series

NaamCommunications in Computer and Information Science (CCIS)
Volume1326
ISSN van geprinte versie1865-0929
ISSN van elektronische versie1865-0937

Workshop

Workshop1st International Workshop on Active Inference (IWAI 2020)
Verkorte titelIWAI 2020
Land/RegioBelgië
StadGhent
Periode14/09/2014/09/20
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Online system identification in a Duffing oscillator by free energy minimisation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit