Online noise estamation using stochastic-gain HMM for speech enhancement

D.Y. Zhao, W.B. Kleijn, A. Ypma, B. Vries, de

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

13 Citaten (Scopus)
146 Downloads (Pure)

Samenvatting

We propose a noise estimation algorithm for single-channel noise suppression in dynamic noisy environments. A stochastic-gain hidden Markov model (SG-HMM) is used to model the statistics of nonstationary noise with time-varying energy. The noise model is adaptive and the model parameters are estimated online from noisy observations using a recursive estimation algorithm. The parameter estimation is derived for the maximum-likelihood criterion and the algorithm is based on the recursive expectation maximization (EM) framework. The proposed method facilitates continuous adaptation to changes of both noise spectral shapes and noise energy levels, e.g., due to movement of the noise source. Using the estimated noise model, we also develop an estimator of the noise power spectral density (PSD) based on recursive averaging of estimated noise sample spectra. We demonstrate that the proposed scheme achieves more accurate estimates of the noise model and noise PSD, and as part of a speech enhancement system facilitates a lower level of residual noise.
Originele taal-2Engels
Pagina's (van-tot)835-846
Aantal pagina's12
TijdschriftIEEE Transactions on Audio, Speech, and Language Processing
Volume16
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - 2008

Vingerafdruk

Duik in de onderzoeksthema's van 'Online noise estamation using stochastic-gain HMM for speech enhancement'. Samen vormen ze een unieke vingerafdruk.

Citeer dit