Samenvatting
We address the problem of online state and parameter estimation in the Hierarchical Gaussian Filter (HGF), which is a multi-layer dynamic model with non-conjugate couplings between upper-layer hidden states and parameters of a lower layer. These non-conjugacies necessitate the approximation of marginalization and expectation integrals, while the online inference constraint renders batch learning and Monte Carlo sampling unsuitable. Here we formulate the problem as a message passing task on a factor graph and propose an online variational message passing-based state and parameter tracking algorithm, which uses Gaussian quadrature to deal with non-conjugacies. We present improved message update rules for all non-conjugate couplings, thus allowing a plug-in inference method for alternative models with equivalent non-conjugate layer couplings. The method is validated on a recorded time series of Bitcoin prices.
Originele taal-2 | Engels |
---|---|
Titel | 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 2676-2681 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-7281-6432-8 |
DOI's | |
Status | Gepubliceerd - 24 aug. 2020 |
Evenement | 2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, Verenigde Staten van Amerika Duur: 21 jun. 2020 → 26 jun. 2020 |
Congres
Congres | 2020 IEEE International Symposium on Information Theory, ISIT 2020 |
---|---|
Land/Regio | Verenigde Staten van Amerika |
Stad | Los Angeles |
Periode | 21/06/20 → 26/06/20 |