Online Message Passing-based Inference in the Hierarchical Gaussian Filter

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)

Samenvatting

We address the problem of online state and parameter estimation in the Hierarchical Gaussian Filter (HGF), which is a multi-layer dynamic model with non-conjugate couplings between upper-layer hidden states and parameters of a lower layer. These non-conjugacies necessitate the approximation of marginalization and expectation integrals, while the online inference constraint renders batch learning and Monte Carlo sampling unsuitable. Here we formulate the problem as a message passing task on a factor graph and propose an online variational message passing-based state and parameter tracking algorithm, which uses Gaussian quadrature to deal with non-conjugacies. We present improved message update rules for all non-conjugate couplings, thus allowing a plug-in inference method for alternative models with equivalent non-conjugate layer couplings. The method is validated on a recorded time series of Bitcoin prices.
Originele taal-2Engels
Titel2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's2676-2681
Aantal pagina's6
ISBN van elektronische versie978-1-7281-6432-8
DOI's
StatusGepubliceerd - 24 aug. 2020
Evenement2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, Verenigde Staten van Amerika
Duur: 21 jun. 202026 jun. 2020

Congres

Congres2020 IEEE International Symposium on Information Theory, ISIT 2020
Land/RegioVerenigde Staten van Amerika
StadLos Angeles
Periode21/06/2026/06/20

Vingerafdruk

Duik in de onderzoeksthema's van 'Online Message Passing-based Inference in the Hierarchical Gaussian Filter'. Samen vormen ze een unieke vingerafdruk.

Citeer dit