Samenvatting
We consider the problem of unfolding lattice trees and polygons in hexagonal or triangular lattice in two dimensions. We show that a hexagonal/triangular lattice chain (resp. tree) can be straightened in O(n) (resp. O(n2)) moves and time, and a hexagonal/triangular lattice polygon can be convexified in O(n2) moves and time. We hope that the techniques we used shed some light on solving the more general conjecture that a unit tree in two dimensions can always be straightened.
Originele taal-2 | Engels |
---|---|
Titel | Proceedings of the 19th Canadian Conference on Computational Geometry (CCCG 2007) 20-22 August 2007, Ottawa, Canada |
Redacteuren | P. Bose |
Uitgeverij | The CCCG Library |
Pagina's | 69-72 |
ISBN van geprinte versie | 978-0-7709-0520-0 |
Status | Gepubliceerd - 2007 |
Evenement | conference; CCCG 2007, Ottawa, Canada; 2007-08-20; 2007-08-22 - Duur: 20 aug. 2007 → 22 aug. 2007 |
Congres
Congres | conference; CCCG 2007, Ottawa, Canada; 2007-08-20; 2007-08-22 |
---|---|
Periode | 20/08/07 → 22/08/07 |
Ander | CCCG 2007, Ottawa, Canada |