On the uniqueness of a certain thin near octagon (or partial 2-geometry, or parallelism) derived from the binary Golay code

A.E. Brouwer

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    12 Citaten (Scopus)

    Samenvatting

    The question of the uniqueness of a certain combinatorial structure has arisen in three contexts: a) is the regular near octagon with parameters(s,t_{2},t_{3},t)=(1, 1,2,23)unique [5]? b) is the partial2-geometry with nexus three and blocksize24unique [2]? c) is there a unique graph such that it is the graph of a parallelism ofleft(^{24}_{4}right)with respect to any [1]? We observe that these questions are equivalent and give an affirmative answer. In fact, we prove a more general theorem, showing the truth of a conjecture by Cameron.
    Originele taal-2Engels
    Pagina's (van-tot)370-371
    TijdschriftIEEE Transactions on Information Theory
    Volume29
    Nummer van het tijdschrift3
    DOI's
    StatusGepubliceerd - 1983

    Vingerafdruk

    Duik in de onderzoeksthema's van 'On the uniqueness of a certain thin near octagon (or partial 2-geometry, or parallelism) derived from the binary Golay code'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit