Samenvatting
Learning from data of past tasks can substantially improve the accuracy of mechatronic systems. Often, for fast and safe learning a model of the system is required. The aim of this paper is to develop a model-free approach for fast and safe learning for mechatronic systems. The developed actor-critic iterative learning control (ACILC) framework uses a feedforward parameterization with basis functions. These basis functions encode implicit model knowledge and the actor-critic algorithm learns the feedforward parameters without explicitly using a model. Experimental results on a printer setup demonstrate that the developed ACILC framework is capable of achieving the same feedforward signal as preexisting model-based methods without using explicit model knowledge.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 1450-1455 |
Aantal pagina's | 6 |
Tijdschrift | IFAC-PapersOnLine |
Volume | 53 |
Nummer van het tijdschrift | 2 |
DOI's | |
Status | Gepubliceerd - 2020 |
Evenement | 21st World Congress of the International Federation of Aufomatic Control (IFAC 2020 World Congress) - Berlin, Duitsland Duur: 12 jul. 2020 → 17 jul. 2020 Congresnummer: 21 https://www.ifac2020.org/ |