On the Role of Models in Learning Control: Actor-Critic Iterative Learning Control

Maurice Poot (Corresponding author), Jim Portegies, Tom Oomen

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

5 Citaten (Scopus)
109 Downloads (Pure)

Samenvatting

Learning from data of past tasks can substantially improve the accuracy of mechatronic systems. Often, for fast and safe learning a model of the system is required. The aim of this paper is to develop a model-free approach for fast and safe learning for mechatronic systems. The developed actor-critic iterative learning control (ACILC) framework uses a feedforward parameterization with basis functions. These basis functions encode implicit model knowledge and the actor-critic algorithm learns the feedforward parameters without explicitly using a model. Experimental results on a printer setup demonstrate that the developed ACILC framework is capable of achieving the same feedforward signal as preexisting model-based methods without using explicit model knowledge.
Originele taal-2Engels
Pagina's (van-tot)1450-1455
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume53
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 2020
Evenement21st World Congress of the International Federation of Aufomatic Control (IFAC 2020 World Congress) - Berlin, Duitsland
Duur: 12 jul. 202017 jul. 2020
Congresnummer: 21
https://www.ifac2020.org/

Vingerafdruk

Duik in de onderzoeksthema's van 'On the Role of Models in Learning Control: Actor-Critic Iterative Learning Control'. Samen vormen ze een unieke vingerafdruk.

Citeer dit