On the rate of convergence to optimality of the LPT rule

J.B.G. Frenk, A.H.G. Rinnooy Kan

    Onderzoeksoutput: Boek/rapportRapportAcademic

    59 Downloads (Pure)

    Samenvatting

    The LPT rule is a heuristic method to distribute jobs among identical machines so as to minimize the makespan of the resulting schedule. If the processing times of the jobs are assumed to be independent identically distributed random variables, then (under a mild condition on the distribution) the absolute error of this heuristic is known to converge to 0 almost surely. In this note we analyse the asymptotic behaviour of the absolute error and its first and higher moments to show that under quite general assumptions the speed of convergence is proportional to appropriate powers of ( log log n)/n and 1/n. Thus, we strengthen and extend earlier results obtained for the uniform and exponential distribution.
    Originele taal-2Engels
    Plaats van productieEindhoven
    UitgeverijTechnische Hogeschool Eindhoven
    Aantal pagina's12
    StatusGepubliceerd - 1985

    Publicatie series

    NaamMemorandum COSOR
    Volume8503
    ISSN van geprinte versie0926-4493

    Vingerafdruk

    Duik in de onderzoeksthema's van 'On the rate of convergence to optimality of the LPT rule'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit