On the number of matroids compared to the number of sparse paving matroids

J.G. Pol, van der, R.A. Pendavingh

Onderzoeksoutput: Boek/rapportRapportAcademic

2 Downloads (Pure)

Samenvatting

It has been conjectured that sparse paving matroids will eventually predominate in any asymptotic enumeration of matroids, i.e. that $\lim_{n\rightarrow\infty} s_n/m_n = 1$, where $m_n$ denotes the number of matroids on $n$ elements, and $s_n$ the number of sparse paving matroids. In this paper, we show that $$\lim_{n\rightarrow \infty}\frac{\log s_n}{\log m_n}=1.$$ We prove this by arguing that each matroid on $n$ elements has a faithful description consisting of a stable set of a Johnson graph together with a (by comparison) vanishing amount of other information, and using that stable sets in these Johnson graphs correspond 1-1 to sparse paving matroids on $n$ elements.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's12
StatusGepubliceerd - 2014

Publicatie series

NaamarXiv.org
Volume1411.0935 [math.CO]

Vingerafdruk Duik in de onderzoeksthema's van 'On the number of matroids compared to the number of sparse paving matroids'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Pol, van der, J. G., & Pendavingh, R. A. (2014). On the number of matroids compared to the number of sparse paving matroids. (arXiv.org; Vol. 1411.0935 [math.CO]). s.n.