On the number of matroids

N. Bansal, R.A. Pendavingh, J.G. Pol, van der

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
3 Downloads (Pure)

Samenvatting

We consider the problem of determining m_n, the number of matroids on n elements. The best known lower bound on m_n is due to Knuth (1974) who showed that log log m_n is at least n - 3/2 log n - O(1). On the other hand, Pi¿ (1973) showed that log log m_n = n - logn + log log n + O(1), and it has been conjectured since that the right answer is perhaps closer to Knuth’s bound. We show that this is indeed the case, and prove an upper bound on log log m_n that is within an additive 1 + o(1) term of Knuth’s lower bound. Our proof is based on using some structural properties of non-bases in a matroid together with some properties of independent sets in the Johnson graph to give a compressed representation of matroids.
Originele taal-2Engels
TitelProceedings 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'13, New Orleans LA, USA, January 6-8, 2013)
Plaats van productiePhiladelphia PA
UitgeverijSociety for Industrial and Applied Mathematics (SIAM)
Pagina's675-694
ISBN van geprinte versie978-1-611972-52-8
StatusGepubliceerd - 2013
Evenement24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013) - Astor Crowne Plaza Hotel, New Orleans, Verenigde Staten van Amerika
Duur: 6 jan. 20138 jan. 2013
Congresnummer: 24
http://www.siam.org/meetings/da13/

Congres

Congres24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013)
Verkorte titelSODA '13
Land/RegioVerenigde Staten van Amerika
StadNew Orleans
Periode6/01/138/01/13
Ander24th Annual ACM-SIAM Symposium on Discrete Algorithms
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'On the number of matroids'. Samen vormen ze een unieke vingerafdruk.

Citeer dit