Samenvatting
The behavior of a general hybrid system in discrete-time can be represented by a nonlinear difference equation x(k + 1) = Fk(x(k),thetas(k)), where thetas(k) is assumed to be a finite-state Markov chain. An important step in the stability analysis of these systems is to establish the Markov property of (x(k),thetas(k)). There are, however, no complete proofs of this property which are simple to understand. This paper aims to correct this problem by presenting a complete and explicit proof, which uses only fundamental measure-theoretical concepts
Originele taal-2 | Engels |
---|---|
Titel | 2006 American Control Conference |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 899-904 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 1-4244-0210-7 |
ISBN van geprinte versie | 1-4244-0209-3 |
DOI's | |
Status | Gepubliceerd - 24 jul. 2006 |
Extern gepubliceerd | Ja |
Evenement | 2006 American Control Conference - Minneapolis, MN, USA, Minneapolis, MN, Verenigde Staten van Amerika Duur: 14 jun. 2006 → 16 jun. 2006 |
Congres
Congres | 2006 American Control Conference |
---|---|
Verkorte titel | ACC 2006 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Minneapolis, MN |
Periode | 14/06/06 → 16/06/06 |
Ander | 2006 American Control Conference |