On the k-independence number of graph products

Aida Abiad, Hidde Koerts

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
17 Downloads (Pure)

Samenvatting

The k-independence number of a graph, αk(G), is the maximum size of a set of vertices at pairwise distance greater than k, or alternatively, the independence number of the k-th power graph Gk. Although it is known that αk(G) = α(Gk), this, in general, does not hold for most graph products, and thus the existing bounds for α of graph products cannot be used. In this paper we present sharp upper bounds for the k-independence number of several graph products. In particular, we focus on the Cartesian, tensor, strong, and lexicographic products. Some of the bounds previously known in the literature for k = 1 follow as corollaries of our main results.

Originele taal-2Engels
Pagina's (van-tot)983-996
Aantal pagina's14
TijdschriftDiscussiones Mathematicae - Graph Theory
Volume44
Nummer van het tijdschrift3
Vroegere onlinedatum17 dec. 2022
DOI's
StatusGepubliceerd - 2024

Vingerafdruk

Duik in de onderzoeksthema's van 'On the k-independence number of graph products'. Samen vormen ze een unieke vingerafdruk.

Citeer dit