On the initialization of nonlinear LFR model identification with the best linear approximation

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

10 Citaten (Scopus)
92 Downloads (Pure)

Samenvatting

Balancing the model complexity and the representation capability towards the process to be captured remains one of the main challenges in nonlinear system identification. One possibility to reduce model complexity is to impose structure on the model representation. To this end, this work considers the linear fractional representation framework. In a linear fractional representation the linear dynamics and the system nonlinearities are modeled by two separate blocks that are interconnected with one another. This results in a structured, yet flexible model structure. Estimating such a model directly from input-output data is not a trivial task as the involved optimization is nonlinear in nature. This paper proposes an initialization scheme for the model parameters based on the best linear approximation of the system and shows that this approach results in high quality models on a set of benchmark data sets.

Originele taal-2Engels
Pagina's (van-tot)310-315
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume53
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 2020
Evenement21st World Congress of the International Federation of Aufomatic Control (IFAC 2020 World Congress) - Berlin, Duitsland
Duur: 12 jul. 202017 jul. 2020
Congresnummer: 21
https://www.ifac2020.org/

Bibliografische nota

Publisher Copyright:
Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Financiering

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme714663, 798627

    Vingerafdruk

    Duik in de onderzoeksthema's van 'On the initialization of nonlinear LFR model identification with the best linear approximation'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit