Samenvatting
Homocoupling of monomers in a palladium-catalyzed copolymerization of donor-acceptor polymers affects the perfect alternating structure and may deteriorate the performance of such materials in solar cells. Here we investigate the effect of homocoupling bis(trialkylstannyl)-thiophene and -bithiophene monomers in two low band gap poly(diketopyrrolopyrrole-alt-oligothiophene) polymers by deliberately introducing extended oligothiophene defects in a controlled fashion. We find that extension of the oligothiophene by one or two thiophenes and creating defects up to at least 10% does not significantly affect the opto-electronic properties of the polymers or their photovoltaic performance as electron donor in solar cells in combination with [6,6]-phenyl C71 butytic acid methyl ester as acceptor. By using model reactions, we further demonstrate that for the optimized synthetic protocol and palladium-catalyst system the naturally occurring defect concentration in the polymers is expected to be less than 0.5%.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 15703-15714 |
Aantal pagina's | 12 |
Tijdschrift | RSC Advances |
Volume | 9 |
Nummer van het tijdschrift | 28 |
DOI's | |
Status | Gepubliceerd - 23 mei 2019 |