On the heat dissipation function for irreversible mechanical phenomena in anisotropic media

L. Restuccia, G.A. Kluitenberg

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review


    The heat dissipation function for anisotropic media in which viscous and inelastic flows occur is derived as a generalization of the heat dissipation function studied in the case that the media are isotropic. The methods of the Thermodynamics of irreversible processes are used. It is seen that the linearization of the theory leads to a stress-strain-temperature relation for anisotropic viscoanelastic media and that the heat dissipation function is a quadratic expression in the components of the stress tensor, the strain tensor, the time derivative of the latter tensor and the temperature. Finally, the obtained results are applied to the particular case of viscous fluids, Maxwell, Kelvin (Voigt), Poynting-Thomson, Jeffreys, Prandtl-Reuss and Hooke media.
    Originele taal-2Engels
    Pagina's (van-tot)169-187
    TijdschriftRendiconti del Seminario Matemàtico di Messina, Serie II
    Nummer van het tijdschrift7
    StatusGepubliceerd - 2000


    Citeer dit