On the Hardness of Computing an Average Curve

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)


We study the complexity of clustering curves under k-median and k-center objectives in the metric space of the Fréchet distance and related distance measures. Building upon recent hardness results for the minimum-enclosing-ball problem under the Fréchet distance, we show that also the 1-median problem is NP-hard. Furthermore, we show that the 1-median problem is W[1]-hard with the number of curves as parameter. We show this under the discrete and continuous Fréchet and Dynamic Time Warping (DTW) distance. This yields an independent proof of an earlier result by Bulteau et al. from 2018 for a variant of DTW that uses squared distances, where the new proof is both simpler and more general. On the positive side, we give approximation algorithms for problem variants where the center curve may have complexity at most ℓ under the discrete Fréchet distance. In particular, for fixed k, ℓ and ε, we give (1+ε)-approximation algorithms for the (k,ℓ)-median and (k,ℓ)-center objectives and a polynomial-time exact algorithm for the (k,ℓ)-center objective.
Originele taal-2Engels
Titel17th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2020
SubtitelSWAT 2020
RedacteurenSusanne Albers
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Aantal pagina's19
ISBN van elektronische versie978-3-95977-150-4
StatusGepubliceerd - 22 jun 2020

Publicatie series

NaamLeibniz International Proceedings in Informatics, LIPIcs
ISSN van geprinte versie1868-8969


Duik in de onderzoeksthema's van 'On the Hardness of Computing an Average Curve'. Samen vormen ze een unieke vingerafdruk.

Citeer dit