On the evaluation at $(-\iota,\iota)$ of the Tutte polynomial of a binary matroid

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

Vertigan has shown that if $M$ is a binary matroid, then $|T_M(-\iota,\iota)|$, the modulus of the Tutte polynomial of $M$ as evaluated in $(-\iota, \iota)$, can be expressed in terms of the bicycle dimension of $M$. In this paper, we describe how the argument of the complex number $T_M(-\iota,\iota)$ depends on a certain $\mathbb{Z}_4$-valued quadratic form that is canonically associated with $M$. We show how to evaluate $T_M(-\iota,\iota)$ in polynomial time, as well as the canonical tripartition of $M$ and further related invariants.
Originele taal-2Engels
Pagina's (van-tot)141-152
TijdschriftJournal of Algebraic Combinatorics
Volume39
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2014

Vingerafdruk Duik in de onderzoeksthema's van 'On the evaluation at $(-\iota,\iota)$ of the Tutte polynomial of a binary matroid'. Samen vormen ze een unieke vingerafdruk.

Citeer dit