On the empirical Bayes approach to adaptive filtering

E. Belitser, B.Y. Levit

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    2 Citaten (Scopus)

    Samenvatting

    We consider an empirical Bayes approach to adaptive estimation in a sequence model corresponding, via Faurier transform, to the pointwise recovery of a signal in the continuous Gaussian white noise model. The vell-knovn minimax approach to this problem is closely related to the Bayes filtering of stationary Gaussian processes corrupted by a Gaussian vhite noise. The proposed method of adaptive filtering combines two well-known techniques: the Wiener filter and empirical Bayes approach. Our main purpose is to demonstrate how this method works, in a prototypical nonparametric problem. We also discuss an interesting phenomenon of (Bayesian) under- and oversmoothing.
    Originele taal-2Engels
    Pagina's (van-tot)131-154
    TijdschriftMathematical Methods of Statistics
    Volume12
    Nummer van het tijdschrift2
    DOI's
    StatusGepubliceerd - 2003

    Vingerafdruk

    Duik in de onderzoeksthema's van 'On the empirical Bayes approach to adaptive filtering'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit