On the efficiency and accuracy of interpolation methods for spectral codes

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

28 Citaten (Scopus)
178 Downloads (Pure)


In this paper a general theory for interpolation methods on a rectangular grid is introduced. By the use of this theory an efficient B-spline-based interpolation method for spectral codes is presented. The theory links the order of the interpolation method with its spectral properties. In this way many properties like order of continuity, order of convergence, and magnitude of errors can be explained. Furthermore, a fast implementation of the interpolation methods is given. We show that the B-spline-based interpolation method has several advantages compared to other methods. First, the order of continuity of the interpolated field is higher than for other methods. Second, only one FFT is needed, whereas, for example, Hermite interpolation needs multiple FFTs for computing the derivatives. Third, the interpolation error almost matches that of Hermite interpolation, a property not reached by other methods investigated.
Originele taal-2Engels
Pagina's (van-tot)B479-B498
TijdschriftSIAM Journal on Scientific Computing
Nummer van het tijdschrift4
StatusGepubliceerd - 2012


Duik in de onderzoeksthema's van 'On the efficiency and accuracy of interpolation methods for spectral codes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit