On the dual minimum distance and minimum weight of codes from a quotient of the Hermitian curve

Edoardo Ballico, Alberto Ravagnani

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In this paper we study evaluation codes arising from plane quotients of the Hermitian curve, defined by affine equations of the form y q + y = x m, q being a prime power and m a positive integer which divides q + 1. The dual minimum distance and minimum weight of such codes are studied from a geometric point of view. In many cases we completely describe the minimum-weight codewords of their dual codes through a geometric characterization of the supports, and provide their number. Finally, we apply our results to describe Goppa codes of classical interest on such curves.

Originele taal-2Engels
Pagina's (van-tot)343-354
Aantal pagina's12
TijdschriftApplicable Algebra in Engineering, Communication and Computing
Volume24
Nummer van het tijdschrift5
DOI's
StatusGepubliceerd - nov. 2013

Vingerafdruk

Duik in de onderzoeksthema's van 'On the dual minimum distance and minimum weight of codes from a quotient of the Hermitian curve'. Samen vormen ze een unieke vingerafdruk.

Citeer dit