On the distance spectra of graphs

G. Aalipour,, Aida Abiad Monge, L. Hogben, Z. Berikkyzy, J. Cummings, J. De Silva, W. Gaok, K. Heysse, J.C.-H. Lin, M. Tait, F.H.J. Kenter

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

18 Citaten (Scopus)

Samenvatting

The distance matrix of a graph G is the matrix containing the pairwise distances between vertices. The distance eigenvalues of G are the eigenvalues of its distance matrix and they form the distance spectrum of G. We determine the distance spectra of double odd graphs and Doob graphs, completing the determination of distance spectra of distance regular graphs having exactly one positive distance eigenvalue. We characterize strongly regular graphs having more positive than negative distance eigenvalues. We give examples of graphs with few distinct distance eigenvalues but lacking regularity properties. We also determine the determinant and inertia of the distance matrices of lollipop and barbell graphs.
Originele taal-2Engels
Pagina's (van-tot)66-87
TijdschriftLinear Algebra and Its Applications
Volume497
Nummer van het tijdschrift15 May 2016
DOI's
StatusGepubliceerd - 2016
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'On the distance spectra of graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit