### Samenvatting

Gabors expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e., the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of which Gabors expansion coefficients can be determined. The restriction to a signal and an analysis window that both have finite-support, leads to the concept of a discrete Gabor expansion and a discrete Gabor transform. After introduction of the discrete Fourier transform and the discrete Zak transform, it is possible to express the discrete Gabor expansion and the discrete Gabor transform as matrix-vector products. Using these matrix-vector products, a relationship between the analysis window and the synthesis window is derived. It is shown how this relationship enables us to determine the optimum synthesis window in the sense that it has minimum L_2 norm, and it is shown that this optimum synthesis window resembles best the analysis window.

Originele taal-2 | Engels |
---|---|

Titel | Proc. ProRISC/IEEE-Benelux Workshop on Circuits, Systems and Signal Processing, Mierlo, Netherlands |

Redacteuren | J.P. Veen |

Plaats van productie | Utrecht, Netherlands |

Uitgeverij | STW Technology Foundation |

Pagina's | 67-72 |

ISBN van geprinte versie | 90-73461-09-X |

Status | Gepubliceerd - 1996 |

Evenement | 1996 ProRISC/IEEE-Benelux Workshop on Circuits, Systems and Signal Processing - Mierlo Duur: 1 jan 1996 → 28 nov 1996 |

### Congres

Congres | 1996 ProRISC/IEEE-Benelux Workshop on Circuits, Systems and Signal Processing |
---|---|

Verkorte titel | ProRISC/IEEE 1996 |

Stad | Mierlo |

Periode | 1/01/96 → 28/11/96 |

Ander | Proc. ProRISC/IEEE-Benelux Workshop on Circuits, Systems and Signal Processing, Mierlo, Netherlands, 27-28 November 1996 |

## Vingerafdruk Duik in de onderzoeksthema's van 'On the discrete version of Gabor's signal expansion, the Gabor transform, and the Zak transform'. Samen vormen ze een unieke vingerafdruk.

## Citeer dit

Bastiaans, M. J. (1996). On the discrete version of Gabor's signal expansion, the Gabor transform, and the Zak transform. In J. P. Veen (editor),

*Proc. ProRISC/IEEE-Benelux Workshop on Circuits, Systems and Signal Processing, Mierlo, Netherlands*(blz. 67-72). STW Technology Foundation.