On the complexity of solving polytree-shaped limited memory influence diagrams with binary variables

Denis Deratani Mauá, Cassio Polpo de Campos, Marco Zaffalon

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

10 Citaten (Scopus)


Influence diagrams are intuitive and concise representations of structured decision problems. When the problem is non-Markovian, an optimal strategy can be exponentially large in the size of the diagram. We can avoid the inherent intractability by constraining the size of admissible strategies, giving rise to limited memory influence diagrams. A valuable question is then how small do strategies need to be to enable efficient optimal planning. Arguably, the smallest strategies one can conceive simply prescribe an action for each time step, without considering past decisions or observations. Previous work has shown that finding such optimal strategies even for polytree-shaped diagrams with ternary variables and a single value node is NP-hard, but the case of binary variables was left open. In this paper we address such a case, by first noting that optimal strategies can be obtained in polynomial time for polytree-shaped diagrams with binary variables and a single value node. We then show that the same problem is NP-hard if the diagram has multiple value nodes. These two results close the fixed-parameter complexity analysis of optimal strategy selection in influence diagrams parametrized by the shape of the diagram, the number of value nodes and the maximum variable cardinality.

Originele taal-2Engels
Pagina's (van-tot)30-38
Aantal pagina's9
TijdschriftArtificial Intelligence
StatusGepubliceerd - 14 nov. 2013
Extern gepubliceerdJa


Duik in de onderzoeksthema's van 'On the complexity of solving polytree-shaped limited memory influence diagrams with binary variables'. Samen vormen ze een unieke vingerafdruk.

Citeer dit