On the circuit diameter of some combinatorial polytopes

Sean Kafer, Kanstantsin Pashkovich, Laura Sanita

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Citaten (Scopus)

Samenvatting

The combinatorial diameter of a polytope P is the maximum value of a shortest path between two vertices of P, where the path uses the edges of P only. In contrast to the combinatorial diameter, the circuit diameter of P is defined as the maximum value of a shortest path between two vertices of P, where the path uses potential edge directions of P, i.e., all edge directions that can arise by translating some of the facets of P. In this paper, we study the circuit diameter of polytopes corresponding to classical combinatorial optimization problems, such as the matching polytope, the Traveling Salesman polytope, and the fractional stable set polytope.

Originele taal-2Engels
Pagina's (van-tot)1-25
Aantal pagina's25
TijdschriftSIAM Journal on Discrete Mathematics
Volume33
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2019
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'On the circuit diameter of some combinatorial polytopes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit