On steady, inviscid shock waves at continuously curved, convex surfaces

B. Koren, E. Maarel, van der

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    2 Citaten (Scopus)
    1 Downloads (Pure)

    Samenvatting

    An accurate and efficient numerical method for steady, two-dimensional Euler equations is applied to study steady shock waves perpendicular to smooth, convex surfaces. The main subject of study is the flow near both ends of the shock wave: the shock-foot and shock-tip flow. A known analytical model of the inviscid shock-foot flow is critically investigated, analytically and numerically. The results obtained agree with those of the existing analytical model. For the inviscid shock-tip flow, two existing analytical solutions are reviewed. Numerical results are presented which agree with one of these two solutions. Good numerical accuracy is achieved through a monotone, second-order accurate, finite-volume discretization. Good computational efficiency is obtained through iterative defect correction iteration and a multigrid acceleration technique which employs local grid refinement.
    Originele taal-2Engels
    Pagina's (van-tot)177-195
    TijdschriftTheoretical and Computational Fluid Dynamics
    Volume4
    Nummer van het tijdschrift4
    DOI's
    StatusGepubliceerd - 1993

    Vingerafdruk Duik in de onderzoeksthema's van 'On steady, inviscid shock waves at continuously curved, convex surfaces'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit