On regularization parameter estimation under covariate shift

Wouter M. Kouw, Marco Loog

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

This paper identifies a problem with the usual procedure for L2-regularization parameter estimation in a domain adaptation setting. In such a setting, there are differences between the distributions generating the training data (source domain) and the test data (target domain). The usual cross-validation procedure requires validation data, which can not be obtained from the unlabeled target data. The problem is that if one decides to use source validation data, the regularization parameter is underestimated. One possible solution is to scale the source validation data through importance weighting, but we show that this correction is not sufficient. We conclude the paper with an empirical analysis of the effect of several importance weight estimators on the estimation of the regularization parameter.

Originele taal-2Engels
TitelInternational Conference on Pattern Recognition
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's426-431
Aantal pagina's6
ISBN van elektronische versie9781509048472
DOI's
StatusGepubliceerd - 13 apr. 2017
Extern gepubliceerdJa
Evenement23rd International Conference on Pattern Recognition, (ICPR 2016) - Cancun, Mexico
Duur: 4 dec. 20168 dec. 2016

Congres

Congres23rd International Conference on Pattern Recognition, (ICPR 2016)
Verkorte titelICPR2016
Land/RegioMexico
StadCancun
Periode4/12/168/12/16

Vingerafdruk

Duik in de onderzoeksthema's van 'On regularization parameter estimation under covariate shift'. Samen vormen ze een unieke vingerafdruk.

Citeer dit