On maximum norm convergence of multigrid methods for elliptic boundary value problems

A.A. Reusken

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
116 Downloads (Pure)

Samenvatting

Multigrid methods applied to standard linear finite element discretizations of linear elliptic boundary value problems in two dimensions are considered. In the multigrid method, damped Jacobi or damped Gauss-Seidel is used as a smoother. It is proven that the two-grid method with v pre-smoothing interations has a contraction number with respect to the maximum norm that is (asymptotically) bounded by Cv-1/2|lnhk|2, with hk a suitable mesh size parameter. Moreover, it is shown that this bound is sharp in the sense that a factor |ln hk| is necessary.
Originele taal-2Engels
Pagina's (van-tot)378-392
Aantal pagina's15
TijdschriftSIAM Journal on Numerical Analysis
Volume31
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1994

Vingerafdruk

Duik in de onderzoeksthema's van 'On maximum norm convergence of multigrid methods for elliptic boundary value problems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit