On K3 double planes covering Enriques surfaces

Chris Peters (Corresponding author), Hans Sterk

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review


The moduli space of nodal Enriques surfaces is irreducible of dimension 9. A nodal Enriques surface is shown to be the quotient of a double cover of the plane by a lift of the Cremona involution. We also show that this gives a straightforward proof of the known description of the automorphism group for the generic such surface.

Originele taal-2Engels
Aantal pagina's30
TijdschriftMathematische Annalen
StatusE-publicatie vóór gedrukte publicatie - 2020


Citeer dit