On guessing random additive noise decoding

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

101 Downloads (Pure)

Samenvatting

We revisit guessing random additive noise decoding (GRAND) in discrete additive noise channels. We derive a non-asymptotic random coding bound using elementary tools, which is applicable to arbitrary noise guessing orders. We then use this bound to analyze a universal variant of GRAND, that does not require knowledge of the noise distribution, and show that it achieves the random coding error exponent. Finally, we apply GRAND to an instance of the Slepian-Wolf coding problem.
Originele taal-2Engels
Titel2024 IEEE International Symposium on Information Theory, ISIT 2024
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1291-1296
Aantal pagina's6
ISBN van elektronische versie979-8-3503-8284-6
DOI's
StatusGepubliceerd - 19 aug. 2024
Evenement2024 IEEE International Symposium on Information Theory, ISIT 2024 - Athens, Griekenland
Duur: 7 jul. 202412 jul. 2024

Congres

Congres2024 IEEE International Symposium on Information Theory, ISIT 2024
Verkorte titelISIT 2024
Land/RegioGriekenland
StadAthens
Periode7/07/2412/07/24

Financiering

This work was partially supported by the European Research Council (ERC) under the ERC Starting Grant N. 101116550 (IT-JCAS).

FinanciersFinanciernummer
IT-JCAS
European Research Council101116550

    Vingerafdruk

    Duik in de onderzoeksthema's van 'On guessing random additive noise decoding'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit