On Generalization of Graph Autoencoders with Adversarial Training

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Adversarial training is an approach for increasing model’s resilience against adversarial perturbations. Such approaches have been demonstrated to result in models with feature representations that generalize better. However, limited works have been done on adversarial training of models on graph data. In this paper, we raise such a question – does adversarial training improve the generalization of graph representations. We formulate L2 and L versions of adversarial training in two powerful node embedding methods: graph autoencoder (GAE) and variational graph autoencoder (VGAE). We conduct extensive experiments on three main applications, i.e. link prediction, node clustering, graph anomaly detection of GAE and VGAE, and demonstrate that both L2 and L adversarial training boost the generalization of GAE and VGAE.

Originele taal-2Engels
TitelMachine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2021, Proceedings
RedacteurenNuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, Jose A. Lozano
UitgeverijSpringer
Pagina's367-382
Aantal pagina's16
ISBN van geprinte versie9783030865191
DOI's
StatusGepubliceerd - 2021
EvenementEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021 - Virtual, Online
Duur: 13 sep. 202117 sep. 2021

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12976 LNAI
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

CongresEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021
StadVirtual, Online
Periode13/09/2117/09/21

Bibliografische nota

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Vingerafdruk

Duik in de onderzoeksthema's van 'On Generalization of Graph Autoencoders with Adversarial Training'. Samen vormen ze een unieke vingerafdruk.

Citeer dit