Samenvatting
We show that Bayes estimators of an unknown density can adapt to unknown smoothness of the density. We combine prior distributions on each element of a list of log spline density models of different levels of regularity with a prior on the regularity levels to obtain a prior on the union of the models in the list. If the true density of the observations belongs to the model with a given regularity, then the posterior distribution concentrates near this true density at the rate corresponding to this regularity.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 165-175 |
Tijdschrift | Acta Applicandae Mathematicae |
Volume | 79 |
Nummer van het tijdschrift | 1-2 |
DOI's | |
Status | Gepubliceerd - 2003 |