On approximating the TSP with intersecting neighborhoods

K.M. Elbassioni, A.V. Fishkin, R.A. Sitters

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    16 Citaten (Scopus)


    In the TSP with neighborhoods problem we are given a set of n regions (neighborhoods) in the plane, and seek to find a minimum length TSP tour that goes through all the regions. We give two approximation algorithms for the case when the regions are allowed to intersect: We give the first O(1)-factor approximation algorithm for intersecting convex fat objects of comparable diameters where we are allowed to hit each object only at a finite set of specified points. The proof follows from two packing lemmas that are of independent interest. For the problem in its most general form (but without the specified points restriction) we give a simple O(logn)-approximation algorithm.
    Originele taal-2Engels
    TitelAlgorithms and Computation
    Subtitel17th International Symposium, ISAAC 2006, Kolkata, India, December 18-20, 2006. Proceedings
    RedacteurenT. Asano
    Plaats van productieBerlin
    Aantal pagina's10
    ISBN van elektronische versie978-3-540-49696-0
    ISBN van geprinte versie3-540-49694-7, 978-3-540-49694-6
    StatusGepubliceerd - 2006

    Publicatie series

    NaamLecture Notes in Computer Science
    ISSN van geprinte versie0302-9743


    Duik in de onderzoeksthema's van 'On approximating the TSP with intersecting neighborhoods'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit