On a graph property generalizing planarity and flatness

H. Holst, van der, R.A. Pendavingh

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

We introduce a topological graph parameter s(G), defined for any graph G. This parameter characterizes subgraphs of paths, outerplanar graphs, planar graphs, and graphs that have a flat embedding as those graphs G with s(G)=1,2,3, and 4, respectively. Among several other theorems, we show that if H is a minor of G, then s(H)=s(G), that s(K n )=n-1, and that if H is the suspension of G, then s(H)=s(G)+1. Furthermore, we show that µ(G)=s(G) + 2 for each graph G. Here µ(G) is the graph parameter introduced by Colin de Verdière in [2].
Originele taal-2Engels
Pagina's (van-tot)337-361
TijdschriftCombinatorica
Volume29
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 2009

Vingerafdruk Duik in de onderzoeksthema's van 'On a graph property generalizing planarity and flatness'. Samen vormen ze een unieke vingerafdruk.

Citeer dit