### Samenvatting

We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful.

Originele taal-2 | Engels |
---|---|

Titel | STOC 2019 - Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing |

Redacteuren | Moses Charikar, Edith Cohen |

Plaats van productie | New York |

Uitgeverij | Association for Computing Machinery, Inc |

Pagina's | 1125-1135 |

Aantal pagina's | 11 |

ISBN van elektronische versie | 978-1-4503-6705-9 |

DOI's | |

Status | Gepubliceerd - 23 jun 2019 |

Evenement | 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019 - Phoenix, Verenigde Staten van Amerika Duur: 23 jun 2019 → 26 jun 2019 |

### Congres

Congres | 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019 |
---|---|

Land | Verenigde Staten van Amerika |

Stad | Phoenix |

Periode | 23/06/19 → 26/06/19 |

## Citeer dit

Bansal, N. (2019). On a generalization of iterated and randomized rounding. In M. Charikar, & E. Cohen (editors),

*STOC 2019 - Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*(blz. 1125-1135). Association for Computing Machinery, Inc. https://doi.org/10.1145/3313276.3316313