Ollivier-Ricci curvature convergence in random geometric graphs

W.L.F. (Pim) van der Hoorn, William Cunningham, Gabor Lippner, Carlo Trugenberger, Dmitri Krioukov

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

18 Citaten (Scopus)
73 Downloads (Pure)

Samenvatting

Connections between continuous and discrete worlds tend to be elusive. One example is curvature. Even though there exist numerous nonequivalent definitions of graph curvature, none is known to converge in any limit to any traditional definition of curvature of a Riemannian manifold. Here we show that Ollivier curvature of random geometric graphs in any Riemannian manifold converges in the continuum limit to Ricci curvature of the underlying manifold, but only if the definition of Ollivier graph curvature is properly generalized to apply to mesoscopic graph neighborhoods. This result establishes a rigorous link between a definition of curvature applicable to networks and a traditional definition of curvature of smooth spaces.
Originele taal-2Engels
Artikelnummer013211
Aantal pagina's14
TijdschriftPhysical Review Research
Volume3
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 5 mrt. 2021

Financiering

FinanciersFinanciernummer
National Science Foundation(NSF)1800738, 1741355

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Ollivier-Ricci curvature convergence in random geometric graphs'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit