Numerical proof of shell model turbulence closure

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

6 Citaten (Scopus)
133 Downloads (Pure)

Samenvatting

The development of turbulence closure models, parametrizing the influence of small nonresolved scales on the dynamics of large resolved ones, is an outstanding theoretical challenge with vast applicative relevance. We present a closure, based on deep recurrent neural networks, that quantitatively reproduces, within statistical errors, Eulerian and Lagrangian structure functions and the intermittent statistics of the energy cascade, including those of subgrid fluxes. To achieve high-order statistical accuracy, and thus a stringent statistical test, we employ shell models of turbulence. Our results encourage the development of similar approaches for three-dimensional Navier-Stokes turbulence.
Originele taal-2Engels
ArtikelnummerL082401
Pagina's (van-tot)1-8
Aantal pagina's8
TijdschriftPhysical Review Fluids
Volume7
Nummer van het tijdschrift8
DOI's
StatusGepubliceerd - 18 aug. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Numerical proof of shell model turbulence closure'. Samen vormen ze een unieke vingerafdruk.

Citeer dit