Numerical Modeling for Shoulder Injury Detection Using Microwave Imaging

Sahar Borzooei, Pierre Henri Tournier, Victorita Dolean, Christian Pichot, Nadine Joachimowicz, Helene Roussel, Claire Migliaccio

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
6 Downloads (Pure)

Samenvatting

Rotator cuff tear (RCT) is one of the most common shoulder injuries, which can be irreparable if it develops to a severe condition. A portable imaging system for the on-site detection of RCT is necessary to identify its extent for early diagnosis. We introduce a microwave tomography system, using state-of-the-art numerical modeling and parallel computing for detection of RCT. The results show that the proposed method is capable of accurately detecting and localizing this injury in different size. In the next step, an efficient design in terms of computing time and complexity is proposed to detect the variations in the injured model with respect to the healthy model. The method is based on finite element discretization and uses parallel preconditioners from the domain decomposition method to accelerate computations. It is implemented using the open source FreeFEM software.

Originele taal-2Engels
Artikelnummer10564578
Pagina's (van-tot)282-289
Aantal pagina's8
TijdschriftIEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology
Volume8
Nummer van het tijdschrift3
Vroegere onlinedatum19 jun. 2024
DOI's
StatusGepubliceerd - sep. 2024
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Numerical Modeling for Shoulder Injury Detection Using Microwave Imaging'. Samen vormen ze een unieke vingerafdruk.

Citeer dit