Numerical Methods for the Hyperbolic Monge-Ampere Equation Based on the Method of Characteristics

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

12 Downloads (Pure)

Samenvatting

We present three alternative derivations of the method of characteristics (MOC) for a second order nonlinear hyperbolic partial differential equation. The MOC gives rise to two mutually coupled systems of ordinary differential equations. As a special case we consider the Monge-Ampere (MA) equation, for which we solve the system of ODEs using explicit one-step methods (Euler, Runge-Kutta) and spline interpolation. Numerical examples demonstrate the performance of the methods.
Originele taal-2Engels
Aantal pagina's43
TijdschriftarXiv
Volume2021
Nummer van het tijdschrift2104.11659[math.NA]
StatusGepubliceerd - apr 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'Numerical Methods for the Hyperbolic Monge-Ampere Equation Based on the Method of Characteristics'. Samen vormen ze een unieke vingerafdruk.

Citeer dit