Novel Bounds on the Probability of Misclassification in Majority Voting: Leveraging the Majority Size

A.T.J.R. Cobbenhagen (Corresponding author), A. Carè, M. C. Campi, F. A. Ramponi, D. J. Antunes, W.P.M.H. Heemels

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

Majority voting is often employed as a tool to increase the robustness of data-driven decisions and control policies, a fact which calls for rigorous, quantitative evaluations of the limits and the potentials of majority voting schemes. This letter focuses on the case where the voting agents are binary classifiers and introduces novel bounds on the probability of misclassification conditioned on the size of the majority. We show that these bounds can be much smaller than the traditional upper bounds on the probability of misclassification. These bounds can be used in a 'Probably Approximately Correct' (PAC) setting, which allows for a practical implementation.

Originele taal-2Engels
Artikelnummer9272617
Pagina's (van-tot)1513-1518
Aantal pagina's6
TijdschriftIEEE Control Systems Letters
Volume5
Nummer van het tijdschrift5
DOI's
StatusGepubliceerd - nov 2021

Vingerafdruk Duik in de onderzoeksthema's van 'Novel Bounds on the Probability of Misclassification in Majority Voting: Leveraging the Majority Size'. Samen vormen ze een unieke vingerafdruk.

Citeer dit