Not a Free Lunch, But a Cheap One: On Classifiers Performance on Anonymized Datasets

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

The problem of protecting datasets from the disclosure of confidential information, while published data remains useful for analysis, has recently gained momentum. To solve this problem, anonymization techniques such as k-anonymity, ℓ -diversity, and t-closeness have been used to generate anonymized datasets for training classifiers. While these techniques provide an effective means to generate anonymized datasets, an understanding of how their application affects the performance of classifiers is currently missing. This knowledge enables the data owner and analyst to select the most appropriate classification algorithm and training parameters in order to guarantee high privacy requirements while minimizing the loss of accuracy. In this study, we perform extensive experiments to verify how the classifiers performance changes when trained on an anonymized dataset compared to the original one, and evaluate the impact of classification algorithms, datasets properties, and anonymization parameters on classifiers’ performance.

Originele taal-2Engels
TitelData and Applications Security and Privacy XXXV - 35th Annual IFIP WG 11.3 Conference, DBSec 2021, Proceedings
RedacteurenKen Barker, Kambiz Ghazinour
UitgeverijSpringer
Pagina's237-258
Aantal pagina's22
ISBN van geprinte versie9783030812416
DOI's
StatusGepubliceerd - 2021
Evenement35th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy, DBSec 2021 - Virtual, Online
Duur: 19 jul. 202120 jul. 2021

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12840 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres35th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy, DBSec 2021
StadVirtual, Online
Periode19/07/2120/07/21

Bibliografische nota

Publisher Copyright:
© 2021, IFIP International Federation for Information Processing.

Vingerafdruk

Duik in de onderzoeksthema's van 'Not a Free Lunch, But a Cheap One: On Classifiers Performance on Anonymized Datasets'. Samen vormen ze een unieke vingerafdruk.

Citeer dit