Nonlinear MPC using an identified LPV model

Zuhua Xu, J. Zhao, Jixin Qian, Y. Zhu

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

67 Citaten (Scopus)
5 Downloads (Pure)


A method of nonlinear model predictive control based on an identified LPV model is proposed. In process identification, a linear parameter varying (LPV) model approach is used. First, typical working-points are selected and linear models are identified using data sets at various working-points; then the LPV model is identified by interpolating the linear models using total data that include transition test data. Further, nonlinear model predictive control based on the LPV model is proposed. The control action is computed via a multistep linearization method of nonlinear optimization problem. The method uses low cost tests and can reach higher control performance than linear MPC. Simulation studies are used to verify the effectiveness of the method.
Originele taal-2Engels
Pagina's (van-tot)3043-3051
Aantal pagina's9
TijdschriftIndustrial and Engineering Chemistry Research
Nummer van het tijdschrift6
StatusGepubliceerd - 2009


Duik in de onderzoeksthema's van 'Nonlinear MPC using an identified LPV model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit